The Telescopic System
Variations

Telescopic profile 160×160, 16E, SP
3-rowed sliding T-nut with
- telescopic profile 120×120, 12E, SP
- telescopic profile 80×80, 8E, SP
- profile 40×40, 4E, SP

Telescopic profile 160×160, 16E, SP
3-rowed sliding T-nut with
- telescopic profile 120×120, 12E, SP
- telescopic profile 80×80, 8E, SP

Telescopic profile 160×160, 16E, SP
3-rowed sliding T-nut with
- telescopic profile 120×120, 12E, SP

Telescopic profile 120×120, 12E, SP
2-rowed sliding T-nut with
- telescopic profile 80×80, 8E, SP
- profile 40×40, 4E, SP

Telescopic profile 120×120, 12E, SP
2-rowed sliding T-nut with
- telescopic profile 80×80, 8E, SP

Telescopic profile 80×80, 8E, SP
1-rowed sliding T-nut with
- profile 40×40, 4E, SP
Maximum admissible force F_{max}

The maximum admissible force perpendicularly to the center line is given by:

$$F_{\text{max}} = F_{\text{max}} \times \frac{Y}{X}$$

Where F_{max} is the maximum admissible force, Y is the distance perpendicular to the center line, and X is the distance along the center line.

Sliding blocks

<table>
<thead>
<tr>
<th>Profile 1</th>
<th>Profile 2</th>
<th>F_{max} (N)</th>
<th>1-rowed</th>
<th>2-rowed</th>
<th>3-rowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>80×80</td>
<td>40×40</td>
<td>5,000 N</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>120×120</td>
<td>80×80</td>
<td>-</td>
<td>9,000 N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>160×160</td>
<td>120×120</td>
<td>-</td>
<td>5,000 N</td>
<td>7,500 N</td>
<td>-</td>
</tr>
</tbody>
</table>

Maximum admissible moment $M_{\text{A max}}$

The maximum admissible moment generated by a force F radial to the center line is given by:

$$M_{\text{A max}} = \frac{F \times Y}{X}$$

Sliding blocks

<table>
<thead>
<tr>
<th>Profile 1</th>
<th>Profile 2</th>
<th>$M_{\text{A max}}$ (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80×80</td>
<td>40×40</td>
<td>400 Nm</td>
</tr>
<tr>
<td>120×120</td>
<td>80×80</td>
<td>900 Nm</td>
</tr>
<tr>
<td>160×160</td>
<td>120×120</td>
<td>800 Nm</td>
</tr>
</tbody>
</table>
Technical data

material: Al Mg Si 0.5 F22
tensile strength: 220 N/mm²
surface: natural anodised

Telescopic profile 80×80, 8E, SBP

bar, 6 m: 9.11.080080.83SBP60

<table>
<thead>
<tr>
<th>moment of inertia (cm⁴)</th>
<th>Iₓ = 150.0</th>
<th>Iᵧ = 150.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>moment of resistance (cm³)</td>
<td>Wₓ = 37.5</td>
<td>Wᵧ = 37.5</td>
</tr>
<tr>
<td>weight (kg/m)</td>
<td>G = 5.2</td>
<td></td>
</tr>
</tbody>
</table>

Description

Telescopic profile 80×80, 8E, SBP

- Description: Telescopic profile 80×80, 8E, SBP
- **moment of inertia (cm⁴):** Iₓ = 150.0, Iᵧ = 150.0
- **moment of resistance (cm³):** Wₓ = 37.5, Wᵧ = 37.5
- **weight (kg/m):** G = 5.2

Technical data

material: Al Mg Si 0.5 F22
tensile strength: 220 N/mm²
surface: natural anodised

Telescopic profile 120×120, 12E, SP

bar, 6 m: 9.11.120120.123SP60

<table>
<thead>
<tr>
<th>moment of inertia (cm⁴)</th>
<th>Iₓ = 554.0</th>
<th>Iᵧ = 554.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>moment of resistance (cm³)</td>
<td>Wₓ = 93.0</td>
<td>Wᵧ = 93.0</td>
</tr>
<tr>
<td>weight (kg/m)</td>
<td>G = 7.8</td>
<td></td>
</tr>
</tbody>
</table>

Description

Telescopic profile 120×120, 12E, SP

- Description: Telescopic profile 120×120, 12E, SP
- **moment of inertia (cm⁴):** Iₓ = 554.0, Iᵧ = 554.0
- **moment of resistance (cm³):** Wₓ = 93.0, Wᵧ = 93.0
- **weight (kg/m):** G = 7.8

Technical data

material: Al Mg Si 0.5 F22
tensile strength: 220 N/mm²
surface: natural anodised

Telescopic profile 160×160, 16E, SP

bar, 6 m: 9.11.160160.163SP60

<table>
<thead>
<tr>
<th>moment of inertia (cm⁴)</th>
<th>Iₓ = 1,424.0</th>
<th>Iᵧ = 1,424.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>moment of resistance (cm³)</td>
<td>Wₓ = 178.0</td>
<td>Wᵧ = 178.0</td>
</tr>
<tr>
<td>weight (kg/m)</td>
<td>G = 10.7</td>
<td></td>
</tr>
</tbody>
</table>

Description

Telescopic profile 160×160, 16E, SP

- Description: Telescopic profile 160×160, 16E, SP
- **moment of inertia (cm⁴):** Iₓ = 1,424.0, Iᵧ = 1,424.0
- **moment of resistance (cm³):** Wₓ = 178.0, Wᵧ = 178.0
- **weight (kg/m):** G = 10.7

machining data ➔ Catalogue “The Profile System, Profile machining 1.1A”
Accessories

Sliding blocks
for telescopic profile

Application
Guide slot for telescopic profiles with sliding blocks

Technical data
material: PA, Murlubric
colour: black

Guide Variations

Sliding block, stationary
for telescopic profile

Description	Weight	Product-No.
Sliding block, stationary, 40×36.5 | 7.6 g | 9.67.1014036
Bush for sliding block, stationary | 10.8 g | 9.67.1024
Setscrew, special, M6×16, with spherical head, stainless | 2.6 g | 0.63.MT091X.06016
Setscrew, special, M6×17, with spherical head, stainless | 2.5 g | 0.63.MT091X.06017
Hexagonal nut, DIN 985 - M6 | 2.1 g | 0.61.D00985.06

1) for Telescopic profile 160×160, 16E, SP

Sliding block, running
for telescopic profile

Description	Weight	Product-No.
Sliding block, running, 50×36.5 | 10.5 g | 9.67.1015036
Feather key, A 14×9×40, thread M6, with 2 dowel pins | 31.0 g | 9.67.1024.1409040
Setscrew, special, M6×16, with spherical head, stainless | 2.6 g | 0.63.MT091X.06016
Setscrew, special, M6×17, with spherical head, stainless | 2.5 g | 0.63.MT091X.06017
Hexagonal nut, DIN 985 - M6 | 2.1 g | 0.61.D00985.06

1) for Telescopic profile 160×160, 16E, SP
Application samples

- Fixation with clamping lever
- Double carriage system
- Height adjustable standing desk
- 3 stepped system
Order comments

- Definition of quantities
 - **Product-Number**
 - \[.60 \] = 1 bar
 - \[.61 \] = 1 PU (Packing Unit)
 - \[.99 \] = 1 PU of 100 pieces

- Cut to length (\(= \text{saw cut} \rightarrow \text{catalogue “The Profile System 1/2015, English” page 55ff} \))

 \[\text{Price for cut to length} = \text{price (€/m) of bar} + \text{price of profile machining for saw cut} + \text{surcharge for scrap} \]

Prices for profile machining

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>1 Piece (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Saw cut, price group 1 (A-E)</td>
<td>1.50</td>
</tr>
<tr>
<td>55</td>
<td>Saw cut, price group 2 (F-K)</td>
<td>2.30</td>
</tr>
<tr>
<td>55</td>
<td>Saw cut, price group 3 (L-P)</td>
<td>3.00</td>
</tr>
<tr>
<td>56</td>
<td>Cross bushing bore for connectors (A-K, X)</td>
<td>1.50</td>
</tr>
<tr>
<td>56</td>
<td>Bore for parallel-connector (Z)</td>
<td>2.60</td>
</tr>
<tr>
<td>56</td>
<td>Cross bore (Q)</td>
<td>1.50</td>
</tr>
<tr>
<td>56</td>
<td>Thread (L-W, Y)</td>
<td>2.00</td>
</tr>
</tbody>
</table>

| Surcharge for scrap: | 10 % |

Commercial Terms and Conditions

- Prices:
 - All prices are valid in EUR.
 - Prices do not include freight and packing.
 - Sales Tax, if payable, will be charged at the applicable rate.
 - Unless otherwise specified, all prices listed are for one item.

- Payment:
 - All orders are C.O.D. until credit approved.
 - 2 % discount if paid within 14 days. All balances are due within 30 days of invoice.
 - F.O.B. Shipping Point.

- Minimum Order:
 - A surcharge of EUR 15.00 will apply to all orders less than EUR 150.00.

- Restocking Fee:
 - In case of returned goods, a 20 % restocking fee will be charged with a minimum fee EUR 25.00.

- Price Validity:
 - This price list replaces all previous price lists. Error and price change are excepted.

- Conditions:
 - Subject to the ‘General Terms and Conditions of Sale’ available on request.

Imprint

Subject to technical modification.
All rights reserved.
Copying - also in parts - only allowed by written consent.
© MayTec Aluminium Systemtechnik GmbH, Germany, D - 85221 Dachau, 2016